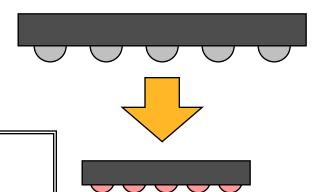


エンボステープの発塵性評価

半導体エコ物流プロジェクトウエハ・部品輸送環境調査WG

調査の背景

- 単導体チップのテーピング、輸送等における包装材料からの異物脱落やパーティクル発生の抑制が必須⇒チップの狭ピッチ化により、さらに問題。
- セットメーカーからの異物脱落、発塵のデータ要求も多く、 そのニーズに対応する必要
 - 各社での対応は試験コストの負担が重い
 - 試験方法も確立していない → 相互のデータの比較もできない


半導体エコ物流プロジェクトにて、調査研究を実施

チップキャリアテープへの要求事項

半導体パッケージの動向

- ・ファインピッチ
- •低背(ロープロファイル)

コンタミやパーティクルが、短絡や オープンの原因となる

- パーティクルの発生が無い(クリーン)
- パーティクルを容易に見つけることができる(透明性)
- 静電対策

調査研究の目的

- 以下の検討を行うための基礎資料として、エンボステープ 材料を用いて各種試験方法にて発塵性を評価する
 - エンボステープからの発塵性評価方法の検討
 - 狭ピッチ半導体のためのエンボステープ材料選定ガイドの作成

評価方法

1. タンブリングによる発塵性評価

タンブリングの特性により、主として材料端面からの発塵性を評価

2. 加振による発塵性評価(テープ間)

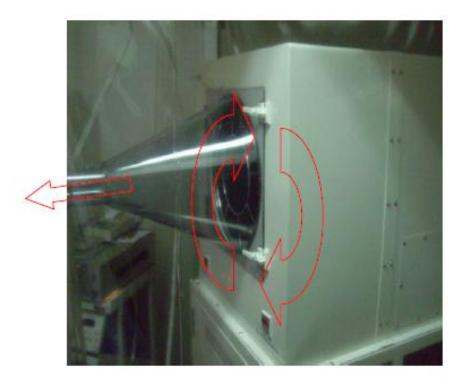
- エンボステープ間の擦れによる発塵性の評価

3. 加振による発塵性評価(チップーテープ間)

– チップとエンボスキャリア表面の擦れによる、テープ材料からの発 塵性を評価

4. 摩耗試験による発塵性評価

エンボスキャリア表面の擦れによる、テープ材料からの発塵性を 評価

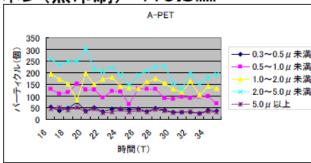

タンブリングによる発塵性評価

タンブリングによる発塵性評価

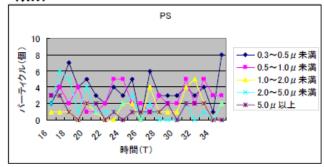
項目	試験条件
試料の状態①(寸法)	0.3mm×200mm×200mmを基準とする。
試料の状態②(クリーン性)	問わず(タンブル開始から15分を間予備試験とし、 試料に付着したゴミを取り除く。)
試料の状態③ (端面の状態・カット方法)	同上。
試料の状態④(巻クセの有無)	巻クセの無い試料を準備。
タンブリング速度	自由落下しやすい様に、30rpm(MIN)で実施。
試料数	4枚/1試験。(試料準備の都合による。)
タンブリング時間	タンブリング開始から15分は試運転。 試運転後の20分間でパーティクル発生量を計測する。
フィルターの取り付け	ダイキン製HEPAフィルターをタンブル試験機排気口の 取り付け、検出されたものを捕集。

タンブリング試験装置

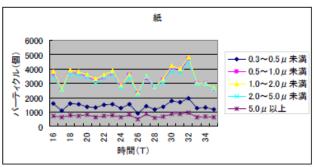
タンブル装置:赤土製作所製

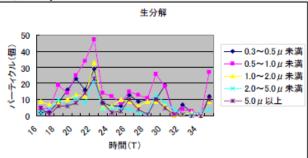


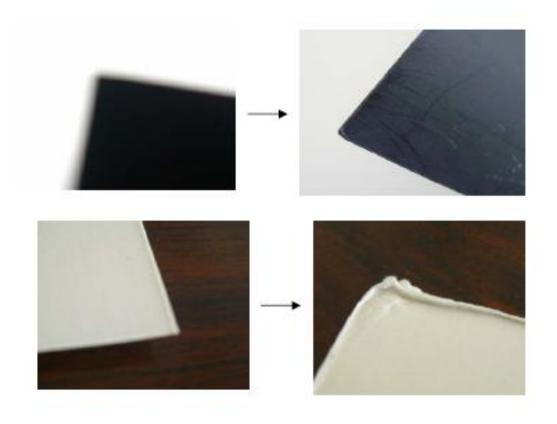
パーティクルカウンター : RION製 KC-25



試験結果


ロA-PETカーボン(黒印刷) T:**0.3**mm


□PSカーボン(黒) T:0.25mm


□紙 T:0.3mm

口植物由来(グレー) T:0.3mm

試験結果

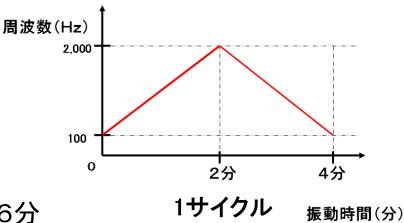
程度の大小はあるが、タンブリング試験で両試料共に端部の変形が確認された。

タンブリング試験結果まとめ

- 発塵量順位は下記の通り。
 - 紙(0.3mm)>>A-PET黒(0.3mm)>植物由来(0.3mm)>PS黒(0.25mm)
- 紙キャリアとプラスチックシートの発塵性の違いは顕著であった。
- タンブリングでは、シート材料の重量、表面状態、コシ等によって、試料の落下運動が異なるため、発塵量の相対的評価は難しい。
 - ⇒ タンブリング試験の条件出しについては未だ課題があると考える。
- プラスチックシートの発塵性評価については、別の方法 (振動試験方法等)で実施検討する。

加振による発塵性評価(テープ間)

試験方法


- 透明袋にエンボステープシートを入れ、振動試験機で振動 させ、発塵量を計測する。
- ■試験手順
 - 試料準備、写真撮影
 - 振動前(空)の透明防湿袋でのパーティクル測定
 - JEITA条件での振動(100~2,000Hz/4分/4サイクル)
 - 振動後のパーティクル測定

振動条件/振動装置

■振動条件

- JEDEC振動条件に従う
 - 周波数:100~2,000Hz
 - 振幅: 0.1mm
 - 時間: 4分
- 振動サイクル 4分×4回=16分

■振動装置

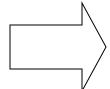
- A社製振動試験装置:エレクトロニクス製品の基板などの共振評価に用いてるもの。

予備試験試料

■ エンボステープ用シート

- a) PSカーボン練り込み黒、サイズ100x100x0.25mm,10枚
- b) PSカーボン練り込み黒、サイズ100x100x0.30mm,10枚
- c) A-PETカーボン印刷黒、サイズ100x100x0.30mm,10枚
- d) 植物由来カーホンレスグレイ、サイズ100x100x0.25mm,10枚
- e) 植物由来カーボンレス黒、 サイズ100x100x 0.30mm,10枚

備考) a, c, dはタンブリング試験と同材料/同一厚さ。


試料を入れる袋

透明防湿袋

◇サイズ: W310 X L320

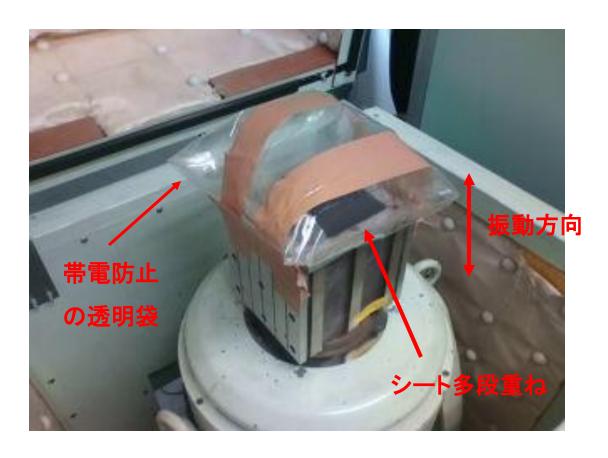
◇写真

袋を裏返しシート10枚を多段重ねし熱シールした状態

パーティクルカウンタ仕様

■仕様

- 測定器: RION社製パーティクルカウンタKR-12A
 - 光源:半導体レーザー
 - 測定最小粒径:0.3μm
 - 測定粒径:0.3/0.5/0.7/1.0/2.0/5.0μm
 - 備考
 - CIS社でのタンブリング試験のパーティクルカウンタもRION社製であり、測定最小粒径、測定粒径も同一。_____


資料2:帯電防止透明袋に入れたシート(10枚重ね)

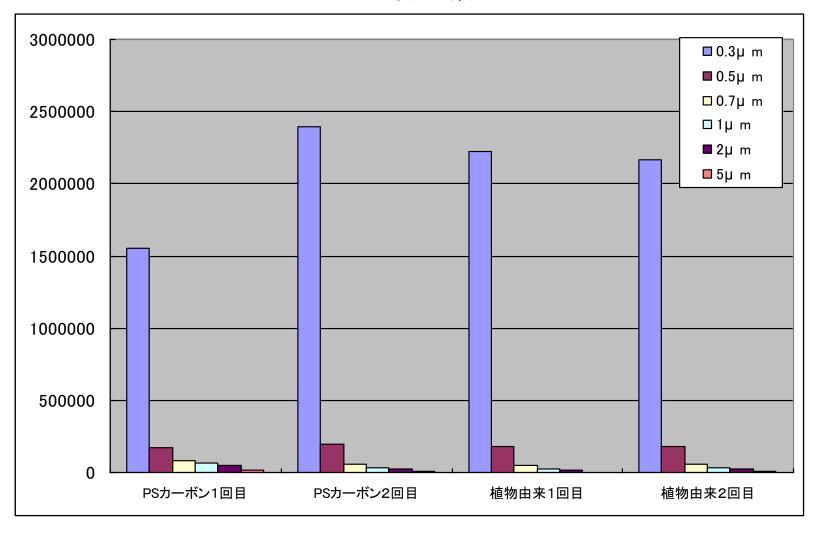
PS 植物由来

資料3:振動試験装置

資料4: 帯電防止袋に入った振動試験試料(振動前後)

振動前振動後

予備試験結果


a)PSカーボン練り込み黒 0.25t

	振動前		振動前振動後		
パーティクルサイズ	袋のみ	袋のみ	測定前静止	測定前に袋揺さ振り	測定前に袋揺さ振り
0.3µ m	357200	472400	611700	1554500	2397300
0.5µ m	97300	93100	38500	175200	198200
0.7μ m	59700	47100	7000	85500	59900
1μ m	31500	21100	1900	64700	32700
2μ m	4600	4500	500	46600	20800
5μ m	0	0	0	13800	4400

e) 植物由来カーホンレス黒 0.30t

	振動前		振動前振動後		
パーティクルサイズ	袋のみ	袋のみ	測定前静止	測定前に袋揺さ振り	測定前に袋揺さ振り
0.3µ m	1212700	732100	979900	2221400	2162400
0.5µ m	141700	93900	67100	183400	180300
0.7μ m	54600	37100	16300	51700	59600
1μ m	21500	14400	4600	25600	33700
2μ m	3900	2200	600	15100	21200
5μ m	200	0	0	3400	5000

パーティクル数

予備試験の結果の考察

- 1. 振動前と振動後で、両シート共にパーティクル数は増加している。
- 2. 振動後のパーティクル測定前に、20回袋を揺さ振ってから測定した場合は、パーティクルが増えた。(揺さ振ると、袋内のパーティクルが舞い上がり、カウントされた?)
- 3. 振動後でも、揺さ振らないで測定すると、パーティクルの増加は、みられない。(パーティクルが沈んだ?目視では沈んだパーティクルは確認できない。なお、初期はエアーを吹き込んで即測定してる)
- 4. 振動後の増加パーティクルは、シートからの可能性が高いが、袋から 削れた可能性もある。(袋に擦れ傷あり)
- 5. パーティクルが、シート表面から発生したのか、端面から発生したのか、袋から発生したのかは不明
- 6. 5µm以上の大きなパーティクルはPSシートが多い傾向
- 7. 今回の条件下においては、シート間の有意差は殆ど見られない(植物 由来のパーティクルが数%多いが、PSシートは0.05mm(20%)軽く、 振動負担が小さい。)

今後の確認実験に向けて

- 今回の結果から、5種シートの比較をしても差は見られない可能性大
 - 振動実験については、シート素材以外の要因(袋、シート端面)が 入ると、何を見ているか判らなくなる。

加振による発塵性評価(チップーテープ間)

加振による発塵性評価

- エンボステープにチップをテーピングしたサンプルに、振動 を加え、発塵の状況を観察する。
- ■試験材料
 - 植物由来の持続性帯電防止
 - カーボン練り込みPS
 - カーボンコートAPET

■ チップ

- シリコンベア 2.9mm□
- BG仕上げ厚み:185um±10um
- 裏面粗さ:#2000

カバーテープ

- 導電性カバーテープ

振動試験および外観検査

■試験方法

- 振動試験後の試料をマイクロスコープで外観検査
- 試験装置:別途
- ■試料
 - [A]C.BインクPET(縦・横×各60分)
 - [B]植物由来(縦•横×60分)
 - [C]C.B練込PS(横60分)

振動試験装置と振動条件

<振動試験概要>

·試験方法:JISZ0232

(ランダム振動、縦振動+横振動)

·加速度実測值:5.8m/s²

·推奨最低試験時間:30min

·試料:3種類

(植物由来、C.BPS、C.BインクPET)

•試験時間:

縦振動	縦振動	横振動
30分	30分	60分

縦振動試験

横振動試験

振動試験および外観検査

<試験実施内容>

(植物由来、C.BPS、C.BインクPET)

•試験時間:

① 縦振動	② 縦振動	③ 横振動	
30分	30分	60分	

試料\時間

1

1+2+3

3

C.B練り込みPS

_

_

[C] 13本

C.BインクPET

2本

[A] 8本

8本

植物由来

2本

[B] 8本

10本

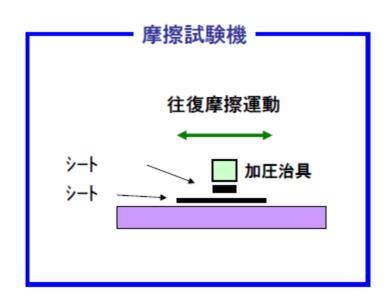
[A]、[B]、[C]について、外観試験を実施する。

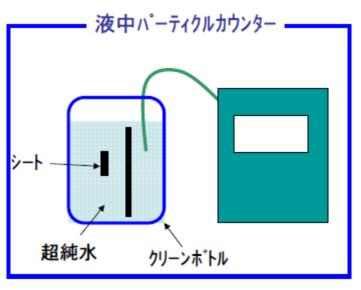
マイクロスコープ(X30)による観察

	C.BインクPET	C.B練込PS	植物由来
振動試験前			
振動試験後			

SEMによる観察

	材料	導電印刷 PET	導電練込 PS	植物由来樹脂
倍	×80	500 μ m	8884 ISKV <u>*88 S88##</u>	0012 15HV V80 500PF
倍率	×300	3 <mark>00 μ m</mark>	8886 ISKV -300 100 mm	8013 15kV ×350 10000

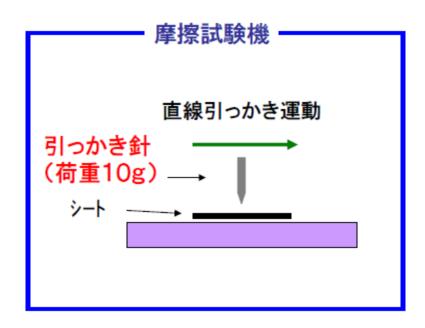

まとめ今後について

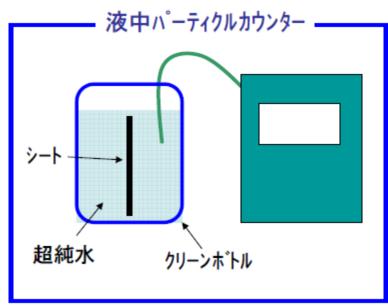

- ■振動試験前・後で発塵性の違いをマイクロスコープで確認 する事ができなかった。
- チップを取り除きSEMで観察し、ダミーチップにより擦れた 傷跡をすることができた。
- しかし、擦れて発生したパーティクルを観察することはできなかった。

摩耗試験による発塵性評価

予備試験

■ シート同士を摩擦した際に発生するパーティクル量を定量




- ・摩擦試験機にクリーン対策がされておらず、発塵量の正確な定量が困難。
- ・シート同士の摩擦の場合、高い荷重をかける必要があり、実際のテープ搬送時と状態が乖離。
- → クリーン環境下での、引っかき試験へと変更

ライオンラボ試験概要

- ①シートを針で引っかいた時に発生するパーティクル量を定量
- ②クリーン環境で試験を実施

引つかき試験針の形状

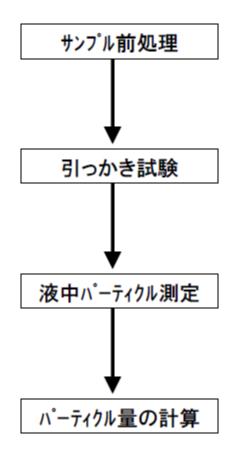
ダミーチップのエッジ部分

引っかき試験針の先端 ダミーチップのエッジに近い針を選定

試験に使用した装置

トライボギア HHS2000 全体像

トライボギア HHS2000 引っかき部分


超純水製造装置 日本ミリポア Milli-Q

超純水製造装置 日本ミリポア Milli-Q

試験条件

・サイズ : 10mm×120mm

☆カッティング後、超純水で洗浄

試験機器 : 新東科学製 HHS-2000(引っかき針 SUS製)

·荷重 : 10g

·移動距離 : 40mm(引っかき回数 1回)

·移動速度 : 2mm/秒

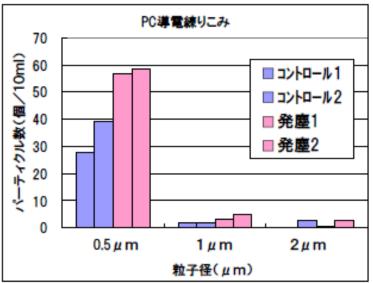
・クリーン度: クラス100 クリーンベンチ アズワンPS100☆引っかき試験及びボトルへの移動はクリーンベンチ内で実施。

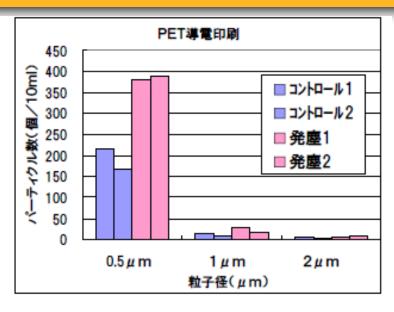
試験機器 : リオン製 KS-42B

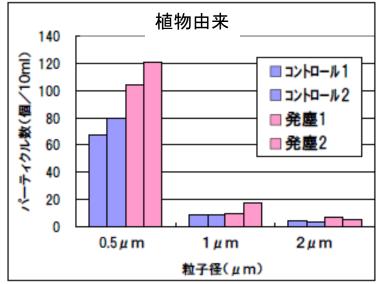
・超純水 : 日本ミリポワ製 Milli-Q Element

・使用容器 : アイセロ化学 クリーンボトルAC-250 ☆引っかき試験後のサンプルをクリーンボトルに移し、

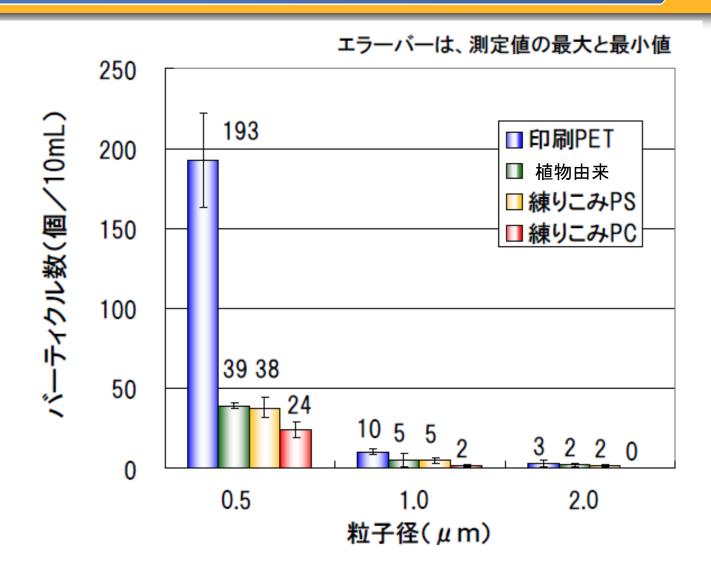

超純水250mlを注ぐ。5回強く震とう後、一晩静置し、パーティクル測定。


同一ボトルの中で、2回測定し平均値を算出。 以上の引っかき試験を 日を変えて測定(n=2)。


☆サンプルのパーティクル量 — コントロールのパーティクル量 について 引っかき試験2回分の平均値を算出 (コントロール:引っかき試験を実施しない以外は同じ操作をしたもの)



パーティクル数測定生データ



パーティクル発生量計算値(発塵後一コントロール)

導電印刷PETのパーティクル発生量が大きい

5つかさ試験後のシート表面写真(S^{ET Project} FM観察)

材料		導電印刷	_	導電練り込み		
		PET	植物由来 樹脂	PS	PC	
倍率	× 100	<u>500 μ m</u>	ance 1780 alon 100 a	6007 (SEV ALBE SOUVE	MS.39 Legel (1995 promin	
	× 300	10 <u>0 μ m</u>	PM2H 15ky - NoH 180	H-204 184V +2018 1810,495		

導電印刷PETで表面層の剥離が観察された

試験結果のまとめ

■ 引っかき試験と液中パーティクルカウンターの使用によりエンボステープから発塵するパーティクルを定量する方法を確立した。

発塵性評価結果のまとめ

各試験でのテープ材料からの発塵性評価の結果

■ タンブリング試験

- テープ材料からの発塵量を定量に比較できる。
- サンプル(材料)の重量(比重)の違いにより、タンブリングに差異があるため、発塵量の相対比較は難しい。

■振動試験

- テープ材料間での振動による発塵量の比較はできなかった。

■摩擦試験

- 引っかき試験とLPCによる測定で、テープ材料からの発塵量を定量に比較できる。

発塵性試験方法の比較

	材料の発塵 性相対比較	試験装置の 入手の容易	試料の準備の 容易性	実使用環境 との近さ	発塵の場所
タンブリング 試験	Δ	△ 限られた公的 試験機関での み所有	シート材料	X	シート端面 → リールやピン ロールとの擦れ
振動による摩 擦試験(シート 材料)	Δ	〇 比較的多くの 公的試験機関 で所有	シート材料	X	シート端面 → リールやピン ロールとの擦れ
振動による摩 擦試験(テー ピング後)	X 定性評価(顕 微鏡観察の み)	〇 比較的多くの 公的試験機関 で所有	X ダミーチップと テーピングが 必要	0	シート表面 →テープ表面と チップとの擦れ
摩耗試験	0	△ 引っかき試験 機+LCPは一 部の試験機関 のみ	シート材料	X	シート表面 →テープ表面と チップとの擦れ

今後の活動

■ 発塵性評価結果の再現性、確度、また試験の簡便性から考えると、どの試験方法も一長一短がある。テープ材料からの発塵性評価方法を規格化するかどうかSEMIパッケージング委員会・クリーンキャリアTFにおいて議論してはどうか?